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Quasi-steady flow of a rotating stratified 
fluid in a sphere 

By S U S A N  FRIEDLANDER 
Department of Mathematics, University of Illinois at Chicago Circle 

(Received 25 November 1975 and in revised form 4 March 1976) 

The steady and quasi-steady motion achieved in a rotating stratified sphere of 
fluid is studied in the context of a linearized Boussinesq model. In  certain para- 
meter ranges an explicit expression is obtained for the flow field as a functional 
of the surface stress. The non-singular interior solution is used to examine the 
behaviour of the boundary layer close to the equator. The results agree with 
previous conclusions about the behaviour of 6 rotating stratified fluid in simpler 
geometries. Viewing the problem as a simple model for the interior core of the 
sun, this work indicates a solar spin-down time that is within the lifetime of the 
sun. 

1. Introduction 
Motion in a rotating stratified fluid is of obvious geophysical and astrophysical 

interest. Theoretical study of flow within a cylinder has been carried out by a 
number of investigators, including Holton (1965), Pedlosky (1967) and Sakurai 
(1969), and with particular interest in the solar controversy, Friedlander 
(1974) and Sakurai, Clark & Clark (1971). In  the context of a linearized model 
they have investigated the mechanisms by which a small perturbation in the 
boundary conditions are communicated to the interior flow. The purpose of this 
paper is to examine the flow of a rotating stratified fluid in a sphere; we obtain 
an explicit expression for the flow field on a long time scale as a functional of the 
driving stress. The results we obtain agree in overall nature with the general 
understanding of the problem in cylindrical geometry. 

A homogeneous rotating fluid responds to a change AQ in the rotation rate 
in a time of order E-*Q-l, where E is the Ekman number, defined in $2. The 
parameter E-9 is known as the dimensionless homogeneous spin-up time scale. 
However in the case of a stratified rotating fluid the angular velocity of each fluid 
particle is governed by a combination of physical processes with the emphasis 
depending on the location of the particle as well as the parameter ranges describ- 
ing the problem. The definition of a stratified spin-up time is by no means uni- 
versal: a discussion of the meaning of this term is given by Buzyna & Veronis 
(1971). As they point out, significant changes in the angular velocity of a particle 
will take place between the homogeneous spin-up time and the diffusion time. 
In this paper we consider the stratified spin-up time to be the time scale on which 
the angular velocity of every particle of the fluid has been modified by the applied 
boundary condition. In our parameter range we find this time scale is of order 
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N2a%-l (for definition see 8 2), which lies between E-t and the viscous diffusion 
time scale of E-1. 

Our particular concern with this problem is motivated by an interest in the 
solar circulation ; we therefore concentrate attention on the case relevant to the 
solar problem, where the Prandtl number B is very small and the Brunt- 
VaisalB frequency N is large. We consider the possibility that the outer shell 
of the sun is rotating more slowly than the inner core; we model the ensuing 
viscous coupling by considering a constant stress applied to the surface of a 
rotating stratified sphere. As the thermal boundary condition, the temperature 
is held fixed at the surface. We note that, in the parameter ranges we are con- 
sidering, the thermal boundary condition is unimportant. The nature of the 
results is the same if the fixed temperature boundary condition is replaced by 
an insulated boundary condition. Solutions were obtained with the latter boun- 
dary condition in Friedlander (1972) ; the solutions for the cylindrical problem 
are exhibited with both an insulated and fixed temperature condition in 
Friedlander ( 1974). 

We find that the flow is driven by a combination of Ekman-layer suction and 
thermal diffusion. Examination of the equations of motion yields the O(1) 
flow as an explicit functional of the stress. The solution is such that the interior 
velocity is always in balance with surface stress to ensure that the radial velocity 
induced by the Ekman layer is non-singular. In  the final section, we use the non- 
singular interior solution to examine the boundary layer in detail in the equatorial 
regions. We find that the Ekman layer thickens to a layer of thickness O(E%); 
however the role of this corner layer is essentially a passive matching of the 
interior flow with the prescribed boundary conditions. 

2. Equations of motion 
We shall describe the motion in terms of the potential-vorticity equation that 

is derived from the linearized non-dimensional equations describing a Bous- 
sinesq fluid. 

The basic equations, in the rotating co-ordinate system, describing a viscous 
heat-conducting fluid, stratified under a potential @, are 

ut+.2&SZ xu+u.vu+p-~vP+v@ = vv2u+(p++v)vv.u, (2.1) 

pt -I- vpu = 0, (2.2) 
V 

s,+u.vs = Kv~s+-[v~u.u+2v.(vxu)xu 

P 
PCV 

PCP 

- 2uVV.u +V x u . V  x u-$(V .u)~]+- ( V . Z C ) ~ ,  (2.3) 

together with an equation of state 

P = f(P, 8). 

Here u denotes velocity, P pressure, s temperature, p density, and SZ is the angular 
velocity of the sphere. The kinematic and kinematic bulk viscosities are Y and 
p and IC is the coefficient of thermal diffusivity. 
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We introduce dimensionless variables by writing 

r = ar*, t = Q-lt*, u = Qau*, p = pp*, 

5 = &*, P = a2Q2pP*, @ = Q2a2@*. 

We then linearize about the steady state by writing 

u* = EU, p* = Po(@) + €p, P* = Po(@) +€P, s* = so(@) +€S, 

21 1 

where E is the Rossby number, which is assumed to be small. 
We shall now assume that the Boussinesq approximation is valid and that 

the equation of state is such that fp = 0. We model the self-gravitating system 
by an externally given potential @, where 

@* = - Br2 sin2 8 + yr2. 

Here y = g/(aQ2), and we assume that y is sufficiently large that the centrifugal 
contribution can be neglected. 

For a convenient simple model we shall take the basic stratification to be such 
that 8s0/8@* and f, are constants with f, = -a. With a suitable choice of basic 
scales of density and temperature we may take 

po _N 1, aso/a@* = l/y, SO that so = r2. 

Thus the linearized equations describing the Boussinesq fluid are, in non- 
dimensional form, 

ut + 2& x u + VP - ~ 2 s r  = E V ~ U ,  

s, + 2u. r = @/a) V%, 

(2.4) 

v.u = 0, (2.5) 

(2.6) 

where the Ekman number E = v/Qa2, the Prandtl number CT = V / K ,  and the 
stratification parameter N 2  = ay. We shall investigate the long time-scale 
behaviour of this set of equations when the perturbation from the initial steady 
state is caused by the following boundary conditions: 

a 7(e), r - -  = o 
ar r :r: 1 on y =  1, (2.7) 

y - - =  

u1=0, s = o  

where the velocity u = u1 P + u2 $+ u3 4. The initial condition is P(r,  0)  = 0. 
We assume that the motion generated by these boundary conditions is axisym- 
metric, i.e. 8/84 = 0. 

Manipulating (2.4), (2.5) and (2.6) by taking V x (2.4) and substituting (2.5) 
and (2.6) we obtain an equation of the form 

arqu, syat = E ~ U ,  s), (2.8) 

where the functionals fl and P are given by 

and 

a s  cos0 as in6  
rI(u,s) = 2--+--- 

sin8 a6cosBU3 

(2.10) 
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k 

where x = rcos8. (For details of this manipulation see Friedlander 1972.) We 
note that the functional II = r cos 0 x potential vorticity, where the potential 
vorticity is the function conserved for an inviscid fluid studied by Howard & 
Siegmann (1969). 

3. Stress-driven motion 
We shall now examine the problem given by (2.8), 

8II(u3, s)pt = EP(U3, s), 

with boundary conditions representing a steady surface stress T(8) $ given by 
(2.7). 

Assuming that the viscous coefficient E is very small, and that the diffusive 
terms can be neglected to first order in the interior, the component equations 
describing the interior flow are 

ult - 2u, sin 8 + aP/ar - 2N2sr = 0, (3.1) 
i ap 
r a8 

u2t-2u,cose+-- = 0, 

u3t + 2u, cos 8 + 2u1 sin 0 = 0, (3.3) 

sin8u2 = 0, 
i a  i a  - -r2u1 + -- 
r2 ar rsin Ba8 (3.4) 

st+2u,r = 0. (3.5) 
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The structure of the boundary layer at  the surface of the sphere r = 1 is 
essentially the same as the structure of the homogeneous Ekman boundary layer. 
This fact is noted by Barcilon & Pedlosky (1967), who remark that whenever an 
Ekman layer is present on a horizontal surface the structure is independent of 
the stratification. In  our problem the spherical boundary is entirely horizontal, 
being perpendicular to the radial gravitational force. There exists an Ekman 
layer of thickness O(E$ characterized by a balance between the Coriolis force 
and the viscous force. We use the Ekman-layer flow to match the inviscid interior 
with the stress boundary condition: this procedure gives the familiar Ekman- 
laver suction condition 

I n  the boundary layer the temperature field is O(E*), thus the thermal boundary 
condition on the interior flow is, to O( l), 

s(i,e) = 0. (3.7) 

The Ekman-layer suction condition (3.6) shows that in the interior u1 is O ( E ) .  
Hence the balance of terms in the divergence equation (3.4) requires that u2 is 
also O(E). Thus in the interior we have to first order in powers of E t  

u1 = O(E), u2 = O(E), u3 = 0(1) ,  = O(l) ,  P = O(1). 

Equations (3.1) and (3.2) then determine the relation between u3, 8 and P, 
namely 

(3.8) 

and (3.9) 

where z = r cos 8. These relations essentially say that to O( 1) the flow is in geo- 
strophic and hydrostatic balance. 

We note that (3.3) and (3.5) require u3 and s to be independent of time on an 
O(1) time scale. This is acceptable since we are interested in the long time be- 
haviour, or the quasi-steady flow. Our approach will not describe internal 
waves. We do not expect these to be present in the problem we are considering, 
where the initial condition is P(r, 0) = 0, and the driving mechanism is a boun- 
dary stress. Substituting (3.8) and (3.9) in the potential-vorticity equation (2.8) 
gives the equation for the O( 1) interior pressure field 

aww), s(P))/at = EW(P) ,s (P ) ) ,  (3.10) 

where It is a second-order spatial differential operator and P is a fourth-order 
differential operator on the pressure field P. 

Returning to the Ekman-layer boundary condition (3.6) we observe from 
the heat equation that ul(l, 8) can be written in terms of s. Since ul is O(E) we 
must consistently include the term representing thermal diffusion in ( 3 4 ,  thus 

(3.11) 
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The boundary condition (3.6) then becomes 

(3.12) 

together with the thermal condition s = 0 at r = 1. Using (3.8) and (3.9) the 
boundary conditions can be written in terms of the pressure field P. 

When we substitute the expressions (2.9) and (2.10) for the functionals IT and 
P we obtain the problem for the flow on a long time scale in terms of the O(1) 
interior pressure field. The equation for P is a fourth-order partial differential 
equation in space which admits the two boundary conditions given by Ekman- 
layer driving and zero perturbation in the temperature field: 

1 x a l a p  case a sine ap 
r sin e ae C O S ~  e ae ---- + 

N Z  a x  2 2  a x  

with boundary conditions 

I a i a p  E l a p  E a s ine[  y---- a 1 aP 27] (3.14) --VZ--+--- - 
N2atx ax NZV z ax sineaecose arr2cos 6 ae 

and z - l a ~ p z  = o (3.15) 

a t r = l .  
As we have remarked, we are particularly interested in the case relevant to the 

solar problem, where the dimensionless parameter N 2 a  is very small. (The 
approximate value appropriate t o  the sun is N 2 a  N We shall consider 
the parameter ranges 

E$ N% I .  

In  this case we note that on a time scale shorter than O(N2aE-l)  the problem 
for P becomes 

with z-laPpx = 0 at r = I .  

arI(u(p), s(P))/at = 0, 

Now Howard & Siegmann (1969) show that the problem 

8rI(u, s ) p t  = 0 

with s prescribed on the boundary has a unique solution. They show that the 
geostrophic flow which is the solution to this problem is uniquely determined 
as the projection of the initial flow onto the space of all geostrophic flows. Thus 
if the fluid is initially in rigid-body rotation, i.e. %he perturbation field is zero for 
t < 0, the problem has the unique solution P = 0. Thus in the problem we are 
considering there is no quasi-steady geostrophic flow on a time scale shorter than 
O(N2aE-l). We interpret this to mean that on a shorter time scale the flow is 
transient and the driving stress has not yet been communicated fully to the 
interior of the fluid. In  our usage of the term, the fluid is not spun-up until the 
time scale is O(N2aE-1). 
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We examine the problem on this time scale by writing 

t = T N 2 ~ E - l .  

The equation and boundary conditions become 

z a i  ap case a s in8aP ---- + ---- 
N2 a Z  z2 az r sin e a8 cos2 8 ae 1 

215 

with boundary conditions 

o = z - l a p p z .  

Since we are interested in solutions that have developed with time, we shall 
not consider the full initial-value problem treated by means of Laplace trans- 
forms. We shall rather assume a particular form for the time dependence of the 
solution suggested by the existence of a steady stress driving the motion. We 
shall assume that the flow can be resolved into a part that grows linearly with T ,  
a steady flow, and a decaying flow represented by a sum of exponential modes. 
In  justification of this assumption we note that in Friedlander (1974) the cylin- 
drical problem was solved using this technique. The results so obtained agreed 
very well with the flow predicted by a time-dependent numerical model. 

We shall therefore write 

P = TPo(r, 8 )  + P+, 8)  + x 9p-AT. 

Substituting this expression for P into (3.16) and boundary conditions (3.17), 
and equating coefficients in T gives the problems for Po, Pl and 9. 

Hence the problem for Po becomes 

and Z-laPOlaz = 0. 

The solution to this problem is 

PO = wr2 sin2 8, giving u3 = wr sin 8. 

The solution of rigid rotation growing linearly with time is physically plausible. 
The magnitude of the angular velocity w will be determined in $ 4  essentially as 
the eigenvalue in a singular boundary-value problem. It will be shown that the 
necessary and sufficient conditions to determine w and certain constants of 
integration are the conditions required to prevent singularities in the velocity 
and vorticity fields. We shall illustrate for stress of the form 7(8) = A sinn 6 
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that the value of w thus determined is exactly that value which is found by 
balancing the rate of change of angular momentum of the fluid with the torque 
due to the applied surface stress. 

We note that the above solution for P O  as a function independent of the z 
co-ordinate implies that there is no growing temperature variation. It is to be 
expected that there is no secular growth of mean temperature since the boun- 
dary temperature is fixed and viscous dissipation is neglected as a heat source. 
(The same conclusion would hold in the case of an insulated boundary condition.) 

The problem for Pl is the forced problem given by 

(3.20) 

with boundary conditions 

l a p 1  N2a a sine a 1 aP1 
v2--+--- - ~ - -  

z a2 sinea0cose [ arr2cOSe ae 2T1 = 'I at r = 1. (3.21) 

We shall now obtain an explicit solution for Pl as a functional of 7(8) in the 
case of particular interest, when N2a is small. 

Let us consider an expansion for Pl in powers of the small parameter N 2 a  by 
writing 

We express Po in powers of N 2 a  by writing 

z-1apllaZ = o 

PI = f ( r ,  e) + N2ag(r, e) + . . . . 

0 = wo+N2aw +... . 
Substituting in (3.20) and equating powers of N 2 a  gives 

with 

(3.22) 

(3.23) 

Integrating (3.22) with respect to x gives 

v yz-1 af/az) = 4w0 Z2 - 2~,, ~ 2 .  (3.24) 

(Symmetry requires that the constant of integration is zero.) The boundary 
condition (3.23) can be satisfied only if wo is zero; i.e. the angular velocity w of 
rigid rotation that grows linearly with T is O(N2a)  with respect to our scaling. 
Hence the solution to (3.22) with boundary conditions (3.23) is 

f ( r ,  0) = P(R), where R = rsine 

( f ( r ,  0 )  is independent of the cylindrical co-ordinate z = r cos 0). Hence when 
N2a < 1 a form of the Taylor-Proudman theorem is valid to O(1). 
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Equating terms O(N2cr) gives the problem for g(r, 8): 

217 

with boundary conditions 

z-lag/az = o 
We express the problem in cylindrical co-ordinates by writing 

where z = r cos 8, R = r sin 8. We note that since f ( r ,  8) = F(R)  we have 

1 af aF 
K e a 8  = aR> 

which is independent of x .  
Integrating (3.25) with respect to z gives 

(3.25) 

(3.26) 

(3.27) 

where N ( R )  is the function of integration. We shall now evaluate (3.27) at r = 1 
by writing z2 = 1 - R2. This gives the following expression for V2(z-1ag/az) at 
r =  1:  

+ 4 w - 6 w R 2 + H ( R ) (  4 ( l -R2)i) .  (3.28) 

Assuming the stress r is symmetric in the northern and southern hemispheres, 
we can write the surface stress as a function of R. Hence the boundary condition 
(3.26) gives us the expression 

(3.29) 
2 r ( R )  2ar a a i a ~  R a I a~ 

R ( 1 - R 2 )  aR aR aRRaR (l-R2)aRRaR' 
+---R2 ____-___ 

Thus we have two expressions for [V2(z-1ag/az)],,, that are functions of the 
cylindrical radius R only. Equating these expressions (3.28) and (3.29) we see 
that symmetry requires the function of integration H ( R )  to be zero. We have 
thus obtained an ordinary differential equation for F(R) that holds on the 
boundary of the sphere r = 1. Since the equation involves only the co-ordinate 
R it  must hold throughout the sphere; thus we have reduced the first-order 
problem to that of solving an ordinary differential equation for F(R) ,  namely 

a7 

aR 
2r +2-. = - 4w+ 60R2+ R(l -B2)  (3.30) 
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Manipulation of the equation enables us to express P(R) as an integral func- 
tional of the stress T(R):  

Thus for any symmetric stress T(R) we can determine the O( 1) steady component 
of the pressure field from (3.31). The velocity and temperature fields are then 
computed from (3.8) and (3.9). 

Once the function P(R) is known, g(r,  8) can be determined by solving (3.27) 
for V2(z-l 8gla.z) with the thermal boundary condition 

Hence 
z-laglaz = 0 at r = I. 

(3.32) 

where X ( r ,  0 )  is a harmonic function chosen to satisfy the boundary condition 

(3.33) 

We remark that the O( I)  solution for the pressure field F ( R )  is independent of 
x ,  thus from (3.9) the O(1) perturbation temperature is zero. The fact that the 
flow to 0(1 )  satisfies the Taylor-Proudman theorem is to be expected since we 
have made use of the assumption that Nza is small. For a weakly stratified fluid 
(i.e. N2 < 1) i t  is reasonable to  obtain no O(1) perturbation in the temperature. 
We find that the temperature field s is O(N2a)  and given by (3.32). 

The long term solution that we have obtained is given by 

P = N2aWr2sin28T+F(R)+N2ag(r ,0)+O(E~) ,  

where (3.31) gives F(R) as an integral operator on the surface stress, and 

TN%E-'= t. 

Thus, in terms of the unscaled dimensionless time variable t ,  we have 

P = tEor2sin28+P(R)+N2ag(r ,0)+O(Eh).  (3.34) 

Hence on a timescale shorter than the viscous time (i.e. t < O(E-l)), the transient 
term that represents secular growth is of smaller order than P(R). Therefore, 
on a time scale where O(N2nE-l) < t < O(E-l),  the flow to O(1) is steady and 
P = P(R). Perhaps it would be more correct to call this solution quasi-steady 
since it is slowly modified by the time-dependent term. On the long time scale 
when t is greater than O(E-l), this time-dependent term becomes dominant and 

P = EtWr2sin28, where Et > O(1). 

Our model predicts that the eventual state of the flow is rigid rotation with 
linearly growing angular velocity. However, when the angular velocity becomes 
sufficiently large (i.e. of the order of the inverse of the Rossby number), the 
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initial linear approximation will no longer be valid. We therefore have an upper 
and a lower bound on the time scale for which (3.34) represents the asymptotic 
solution to stress-driven flow of a stratified fluid in a rotating sphere. 

4. Solution for particular values of the stress 
In  the previous section we obtained the O( 1) solution for the pressure field in 

terms of the applied stress 7(0). We shall now illustrate for particular symmetric 
values of r(0) how the integrals are evaluated and the constants of inhegration 
determined. We shall show that the conditions that the velocity and vorticity 
fields be non-singular at the poles and the equator are the necessary and sufficient 
conditions to determine the constants of integration and the angular velocity w.  
This value of w is exactly the value required by the balance between the rate of 
change of angular momentum and the torque due t o  the surface stress 7(0) .  

The steady O(1) component of the pressure field is given by (3.31), hence the 
velocity field u3 is given by 

We shall now indicate how the magnitude of w and the constants of integration 
can be determined. When the stress has the form 

7=Asinn0 or ~=Asinn81cos0l 

the above constants are exactly determined from the condition of no singularities 
in the velocity and vorticity fields at  the pole and at the equator. 

Let us first consider 
7 = A R n  at r =  1. 

To investigate the integral (4.1) we introduce a change of co-ordinates by writing 
R = sin x. The expression (4.1) for u3 then becomes 

u3 = -s inx~-~(Asin~+zx-wsin3xcos~x)dx ax 
sin3 x 

1 +cosx clcosx 
+(c,+c,)sinxlog - +-+csinx, (4.2) 1 sinx 1 sinx 

where c, co and c1 are constants of integration. 

Case (a): n is odd. Here the integral 

can be written in terms of sin3xdx as s 
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Thus from (4.2) 

1 (n+2)! k-1 sinn-2k-2 

n - 2 k + l  
u3 = A [,," n[ (n+2-2j)-2 

k = l  (n-2k+3)!jXo 

- pqn+2)!f(n-3) "1 /s$s/sin3xdx+-sin3s w 
10 

(n+2-2j)-2-- sinx - 
3! j - 0  5 

l+cosx clcosx 
+(co +cl)  sinxlog +- + c sin x. I sinx 1 sinx (4.3) 

Hence the velocity and vorticity fields are non-singular if we choose 

c1 = co = 0, 

(n + 2)! f(n-3) 

3! j = o  
w = 5A- n: (n + 2 - 2 j y .  

Now the angular velocity w is determined by the balance between the rate of 
change of angular momentum and the torque due to the surface stress. Thus 

$ [ T/02n/onfo' wr4sin3 8drdOdg ] = /02nIoff sin2 8~dedgl. 

Writing r = A sin" 8 we obtain 

Hence 

Thus the value of w prescribed by the angular momentum balance is exactly 
that value which ensures the flow is non-singular within the sphere. 

For example when 7 = A sin 8 we have o = 5A and the O( 1) velocity field is 

u3 = Et5Ar sin 8 + &Ar3 sin3 0 + cr sin 8, (4.4) 

where c depends on the initial conditions. 

Case ( b ) :  n is even. Here the integral 

J A  sinn+Zxdx 

can be expressed in terms of !sin2 xdx. This leads to a slightly more complicated 
balance between w and A in order to remove possible singularities in u3 and 
R-18(Ru3)/8R at R = 0 and R = 1. Following an analysis similar to  case (a)  we 
obtain 

9% 1577 
j = O  8 

0 = (n +2)! n: (n+2-2j)-Z-A, 

with co = 0 and c1 = - &w. Once again this is the value of the angular velocity 
w prescribed by the balance between the applied torque and the rate of increase 
of angular momentum. 
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FIGURE 2. Sketch of circulation driven by the stress ~ ( 8 )  = A sin 8. 

In the case of a symmetric stress of the form A sinn 8 [ cos 8[  a similar process 
determines the velocity field. Again this non-singular flow is consistent with the 
angular momentum fed into the fluid by the surface stress. 

We are now in the position to sketch the flow pattern within the sphere: we 
shall do this for a stress r(8) = A sin 8. 

From the classical Ekman-layer analysis the b2 component of velocity is 
given by 

We have calculated in this case that the interior velocity is 

u3 = Et5ArainB+CrsinB+$Ar3sin38. 

Thus a,(o,8) = +*Asin0 Icos81*. 

Also the interior radial component of velocity is given by 

= 4A[2 cos2 8 - sin2 81. 

(4.5) 

Thus figure 2 is a sketch of the flow pattern. 
We remark that the Ekman-layer mechanism causes interior upwelling at  

the poles (for positive stress) which is compensated by interior downwelling at 
the equator. Within the boundary layer there is no flux of fluid across the equator 
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or at  the pole. The total flux of fluid from the Ekman layer into the interior is 
zero in each quadrant. Thus the fluid moves in a cellular pattern: it enters the 
Ekman layer at polar latitudes and returns with increased angular momentum 
at equatorial latitudes. 

5. The equatorial Ekman layer 
In  the previous section, we determined the quasi-steady flow to first order 

as a functional of the applied surface stress ~ ( 0 ) .  This result was obtained assum- 
ing the velocity boundary conditions were satisfied via an Ekman-type boundary 
layer. As noted by Barcilon & Pedlosky (1967)) the structure of the Ekman layer 
is not modified by stratification to  first order. Hence, in the region away from 
the equator, the stream-function equation describing the boundary layer is 
given by the classical Ekman-layer balance between viscous and Coriolis forces. 
The equation is 

- 4 C O S ~  $a2$/ag = aa$Iaq, (5.1) 

where the stream function $ is defined by 

and the boundary-layer co-ordinate is given by 

E*q = 1-r. 

From (5.1), we observe that the thickness of the Ekman layer is 

O(E* lcos81-*). 

Thus, the boundary layer blows up close to the equator, and we expect the 
Ekman-layer balance to break down. 

Now the interior solution obtained in $4 is driven by Ekman-layer suction 
and hence is not strictly valid in the region close to the equator. Since the 
interior solution has been constructed to be non-singular at  the equator, we extend 
this solution to the equator. We shall show that the equatorial boundary layer 
admits the matching of the interior velocity with the imposed stress boundary 
condition. Thus, in the context we are considering, the role of the equatorial 
layer is essentially a passive matching of the interior flow, driven by the Ekman 
layer, with the surface boundary conditions. In  this manner, we shall have 
justified the extension of the interior flow to the equator. 

We examine the boundary layer in the equatorial region by writing 

Eb[ = 47 - 0, 
giving cosefiEb[, s i n e 2 1  and E u ~ = l - r .  

In  terms of [ and q, the boundary-layer equation becomes 
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Examination of (5.3) shows that there is a change in the balance of forces at an 
interface region where 

a = & ,  b = + .  

This corresponds to  the results of Stewartson (1966), who examined the equatorial 
behaviour of a homogeneous fluid between rotating concentric spheres. Hence, 
at a distance O(E*) from the equa%or, the boundary layer thickens to it layer of 
thickness O(E%), and the stream-function equation is given by 

We shall find an approximate solution to (5.4) with suitable boundary condi- 
tions. The approach we shall take is the following. We note that when 5 is large, 
i.e. (in- 0) > O(E*), the dominant terms in the stream-function equation are 

This is the classical Ekman-layer equation, whose solution is well known. When 
5 is small, i.e. ( in- -0)  < O(E*), the dominant terms in the stream-function 
equation are 

In  the intermediate region where +n-8 = O(E*), all the terms in (5.4) are im- 
portant. Let the interface of this region and the Ekman layer be given by 
6 = 6, where 

We shall obtain the solution to the Ekman-layer equation (5.5) and evaluate 
this solution a t  the interface &. We assume that this function is an approximate 
solution to (5.4) in the neighbourhood of &, and we shall take this function to 
be the upper boundary condition on (5.6) at 5 = cI. We then solve (5.6) with 
such a boundary condition at  6 = &, assume zero flow across the equator, and 
match the interior flow with the surface stress at  7 = 0. The composite solution 
in the regions f; 2 Q and 5 6 Q, which is continuous but not smooth at 6 = &, 
is then an approximate solution for the equatorial boundary layer. We note that 
this solution is in reasonable agreement with a numerical solution of (5.4) given 
by Dowden (1972). 

We shall now carry out the procedure outlined above in the case where the 
stress is 7 = A sin 8. It has already been shown that such a stress generates an 
interior velocity 

Classical Ekman-layer analysis gives the stream-function solution of (5.5) as 

is O(1). 

u, = 5Art sin O + +Art sin3 8. 

@ = +A<exp ( - @7) cos 547. 

(5.7) 

(5.8) 

at 6 = Cz. The boundary conditions in the Hence, @ = +Aczexp ( -  627) cos 
equatorial layer at the side wall 7 = 0 become 
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where a tilde denotes a boundary-layer quantity. As usual in such boundary- 
layer analysis, the condition as 7 +co is exponential decay. Symmetry prescribes 
zero flow across the equator, thus 

G2 = 0 at c =  0. (5.10) 

Hence we seek the solution to (5 .6)  with boundary conditions given by (5.8)- 
(5.10), namely 

with 

where &r-OZ= E*Cz and CI is O(l ) ,  0 < 7 < co, 0 < < <  &. 
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Region I1 

2 

Region I 

0 

Region I11 6 
FIUURE 3. Sketch of contours of ua velocity component in the boundary layer. 
Region I, +r-0 > O(E#). Region 11, iJn-0 = O(E#). Region 111, +a-0 < (A'*). 

From the expression for the stream function, we can calculate the southward 
component 6, of the velocity: 

6 2  = M C b P  ( - 6 h )  (cos str +sin (sir) 
nn 

- c "n@&Pl,exP ((4,r) +Azn%nexP (%nr) +A3,@3neXP (w3,r) 
n=l 

+ C1nChP ( - 5fr) (COB r;fr - sin 5fr)c,nCbxP ( - 5ir) (cos5bl + sinCfr>l. 
In  the Ekman layer, the Q, velocity component is 

Q, = &A@exp ( - [*r) (cos [+q + sin c*q). 

Figure 3 is a sketch of the level curves of u2 in the regions I, I1 and I11 of the 
boundary layer. 

We note that the analytic solution does not vary smoothly between region I 
and region 11. This is to be expected from our method of attacking the prob- 
lem, since we have only approximated the solution in region I1 by the value at  
C I .  I n  figure 3, however, the discontinuity has been smoothed to give a sketch 
of the realistic solution approximated by our analysis. To obtain a smooth 
curve rigorously, it is necessary to  solve the full equation (5.7). This has been 
done numerically by Dowden (1972). His results give smooth curves ofthe general 
shape we have obtained; he also concludes that the u, velocity component at 
the surface increases from zero to a maximum which falls away as the solution 
becomes more like an Ekman layer. On resealing the Dowden co-ordinates to be 
equivalent to and 7, we see that the numerical value of Q given by his results 
is approximately unity. 

15 FLM 76 
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We conclude that our method of investigation of the equatorial boundary layer 
gives a good approximation to the behaviour of 9 and u2. We have obtained a 
non-singular solution which agrees with the Ekman-layer solution away from 
the equator and which matches the interior flow with the prescribed boundary 
conditions close to the equator. Hence, in the circumstances we are considering, 
the role of the equatorial layer is essentially passive. The interior flow is driven 
by the classical Ekman-layer circulation and is not modified to first order by 
equatorial effects. 

6. Comparison with numerical results 
I n  the previous sections we have exhibited the flow obtained on a long time 

scale for stress-driven flow in a rotating stratified sphere. We have obtained 
explicit expressions describing the pressure field and have shown that the role, 
in this problem, of the equatorial boundary layer is essentially a passive one. 
The quasi-steady flow is achieved on a time scale O(N2crE-l) : before this time is 
reached, the flow is in a transitional stage where the circulation is driven by a 
combination of Ekman-layer suction and thermal diffusion. 

In  obtaining the above results, we made use of several simplifying approxima- 
tions. In  support of our methods for attacking the problem, we now observe that 
our results are in good agreement with a numerical model developed by Moore 
& Weir (1976) for spin-up in a rotating stratified sphere. The numerical model 
gives a stream function for flow on a long time scale that is in very good quali- 
tative agreement with the cellular pattern (see figure 2) obtained from our 
analytic treatment of the problem. Their numerical work also shows that in our 
parameter range there is a very small distortion of the temperature field. Com- 
parison between the two sets of results describing the boundary-layer structure 
is also good: the numerical model shows that the Ekman Iayer is unaffected by 
stratification. We also see that, while the boundary layer thickens at  the equator, 
there is no significant jet of fluid affecting the interior in equatorial regions. We 
finally observe that the numerical model is based on the fuIl nonlinear system of 
equations. The results, however, indicate that the effects of nonlinearity are very 
small, thus supporting our use of the linear approximation. 

7. Relevance to the solar problem 
We have obtained the above results by considering parameters relevant to the 

solar problem, where N2cr < 1. We were particularly interested in this case in 
light of the controversy surrounding hypotheses of Dicke (1964,1967) concerning 
the nature of the sun. Is i t  possible that the strong density gradient in the core 
and the large-scale stellar dimensions would make a solar Ekman layer un- 
important and allow differential rotation between the interior core and the 
outer shell to persist over the lifetime of the sun? We model the effect of the 
viscous coupling between the more slowly rotating outer shell and the inner 
core by considering a steady stress applied to the surface of a rotating stratified 
sphere. Our results show that on a time scale O(N2crE-l) the stress is completely 
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communicated to the interior; we obtain a quasi-steady flow that is governed 
by a combination of Ekman-layer driving and thermal diffusion. It is true as 
Dicke suggests that strong stratification inhibits the role of the Ekman layer, 
but the circulation is not entirely blocked. Considering parameters relevant to 
the solar problem, our results show that an initial differential rotation between 
the core and the outer shell would be smoothed out on a time scale of order lo9 
years. It should be noted that this is very close to the lifetime of the sun, and our 
analysis indicates that on a shorter time scale the flow is still transient. On this 
shorter time scale, the effects of the stress have not fully penetrated the interior, 
and a central portion of the core could be rotating more rapidly. However, as 
Howard, Moore & Spiegel (1967) remark, it is more realistic to consider the 
boundary layers as turbulent, which considerably shortens the spin-down time. 
Thus lo9 years is an upper bound for the achievement of quasi-steady circulation 
of the solar core. 

We should also remark that our analysis has made use of the fact that both 
E and N 2 c  are small parameters. The double expansion assumes that 

E* << N 2 c  < 1. 

This is indeed the case in the solar problem, where E* N 10-8 and N 2 c  N 

If we were to continue further in the expansion in powers of N 2 c  we should have 
to consistently include second-order terms from the original E* expansion. 
However our double expansion is valid to O(N2e) .  

As we mentioned in the introduction, the problem of flow in a rotating stratified 
fluid has been previously investigated by Friedlander (1974) and Sakurai et al. 
(1971) for parameter ranges relevant to the solar problem. They consider flow 
of a fluid with small Prandtl number in a cylindrical geometry. The approach of 
Friedlander (1974) is similar to the approach taken in the current investigation 
of the problem in a sphere: the results and conclusions are the same for both 
geometries. In  the work of Sakurai et al. (1971), motion driven by an imposed 
velocity on the boundary, u, = WY, is considered. With this boundary condition, 
they also conclude that the asymptotic state of rigid rotation is achieved on a 
time scale of order N2eE-1. In  order to represent the interaction of the shell of 
the sun with the solar core, they then consider a sequence of impulses with 
decreasing imposed angular velocity. The process by which this modified 
boundary condition is communicated to the interior is less efficient and it is 
possible that the angular velocity in the solar core is non-uniform and the 
impulses have not fully penetrated the interior in the lifetime of the sun. 

In our present analysis of the problem, we model the effect of the more slowly 
rotating solar convection zone on the interior core by considering a steady 
surface stress. We conclude that on a time scale of order N2cE-l  the boundary 
driving force has fully penetrated the interior and the fluid motion is in a quasi- 
steady state where the velocity is given by (4.1). The long term state of rigid 
rotation growing linearly with time is not however achieved until the viscous 
time scale O(E-l) has elapsed. The difference between the driving mechanisms of 
Friedlander and Sakurai et al. appears to lead to certain differences in the con- 
clusions. Both conclude that rigid rotation will not be achieved until a time has 

15-2 
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elapsed that is longer than the lifetime of the sun. However, in the stress-driven 
model, the fluid is spun down to an intermediate steady state on a time scale 
that is within the lifetime of the sun. 

This work was partially supported by N.S.F. Grant MPS 75-07391. 
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